Clocks as Types in Synchronous Dataflow Languages

Marc Pouzet LRI & INRIA Univ. Paris-Sud 11 Orsay

IFIP WG 2.8 - 9/06/2009

(joint work with Albert Cohen, Louis Mandel, Florence Plateau)

Synchronous Dataflow Languages

Model/program critical embedded software.

The idea of Lustre :

- directly write stream equations as executable specifications
- provide a compiler and associated analyzing tools to generate embedded code
- E.g, the linear filter :

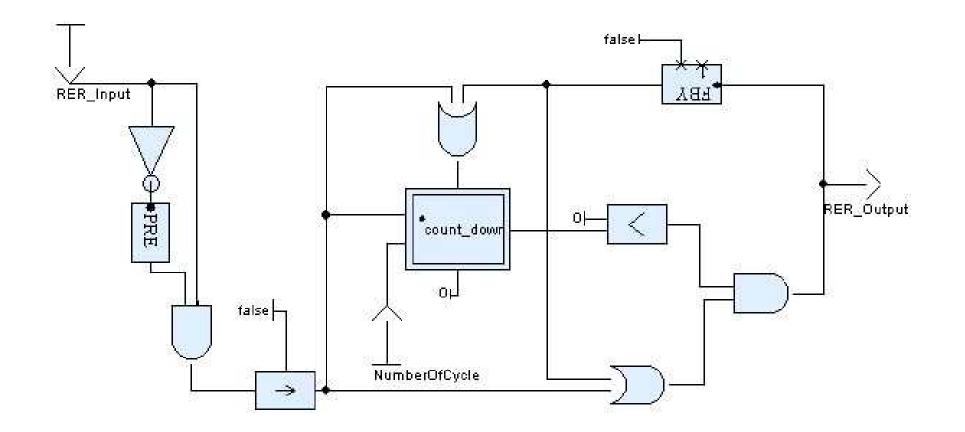
$$Y_0 = bX_0$$
, $\forall n \; Y_{n+1} = aY_n + bX_{n+1}$

is programmed by writing, e.g :

we write invariants

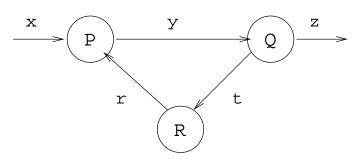
other primitives to deal with slow and fast processes (sub/over-sampling); not necessarily periodic

An example of a SCADE sheet



Dataflow Semantics

Kahn Principle : The semantics of process networks communicating through unbounded FIFOs (e.g., Unix pipe, sockets)?



- message communication into FIFOs (send/wait)
- reliable channels, bounded communication delay
- blocking wait on a channel. The following program is forbidden

if (A is present) or (B is present) then ...

- a process = a continuous function $(V^{\infty})^n \to (V'^{\infty})^m$.

Lustre :

- Lustre has a Kahn semantics (no test of absence)
- A dedicated type system (clock calculus) to guaranty the existence of an execution with no buffer (no synchronization)

Pros and Cons of KPN

(+) : **Simple semantics :** a process defines a function (determinism); composition is function composition

- (+) : Modularity : a network is a continuous function
- (+) : Asynchronous distributed execution : easy; no centralized scheduler

(+/-) : Time invariance : no explicit timing; but impossible to state that two events happen at the same time.

x	_	x_0	x_1		x_2	x_3	x_4	x_5			•••
f(x)	—	y_0	y_1		y_2	y_3	y_4	y_5			•••
f(x)	_	y_0		y_1	y_2		y_3		y_4	y_5	•••

This appeared to be a useful model for video apps (TV boxes) : Sally (Philips NatLabs), StreamIt (MIT), Xstream (ST-micro) with various "synchronous" restriction à la SDF (Edward Lee)

A small dataflow kernel

A small kernel with minimal primitives

$$\begin{array}{rll} e & ::= & e \; {\rm fby} \; e \; | \; op(e,...,e) \; | \; x \; | \; i \\ & & | \; {\rm merge} \; e \; e \; e \; | \; e \; {\rm when} \; e \\ & & | \; \lambda x.e \; | \; e \; e \; | \; {\rm rec} \; x.e \end{array}$$

$$op & ::= \; + | \; - \; | \; {\rm not} \; | \; ... \end{array}$$

- function $(\lambda x.e)$, application (e e), fix-point (rec x.e)
- constants i and variables (x)
- dataflow primitives : x fby y is the unitary delay; $op(e_1, ..., e_n)$ the point-wise application; sub-sampling/oversampling (when/merge).

Dataflow Primitives

	ſ					
x	x_0	x_1	x_2	x_3	x_4	x_5
y	y_0	y_1	y_2	y_3	y_4	y_5
x + y	$x_0 + y_0$	$x_1 + y_1$	$x_2 + y_2$	$x_3 + y_3$	$x_4 + y_4$	$x_5 + y_5$
$x \; {\tt fby} \; y$	x_0	y_0	y_1	y_2	y_3	y_4
h	1	0	1	0	1	0
x' = x when h	x_0		x_2		x_4	
\overline{z}		z_0		z_1		z_2
merge $h \; x' \; z$	x_0	z_0	x_2	z_1	x_4	z_2

Sampling :

- \blacktriangleright if h is a boolean sequence, x when h produces a sub-sequence of x
- **•** merge $h \ x \ z$ combines two sub-sequences

Kahn Semantics

Every operator is interpreted as a stream function $(V^{\infty} = V^* + V^{\omega})$. E.g., if $x \mapsto s_1$ and $y \mapsto s_2$ then the value of x + y is $+^{\#}(s_1, s_2)$

$$i^{\#} = i.i^{\#}$$

$$+^{\#}(x.s_{1}, y.s_{2}) = (x + y).+^{\#}(s_{1}, s_{2})$$

$$(x.s_{1}) fby^{\#} s_{2} = x.s_{2}$$

$$x.s when^{\#} 1.c = x.(s when^{\#} c)$$

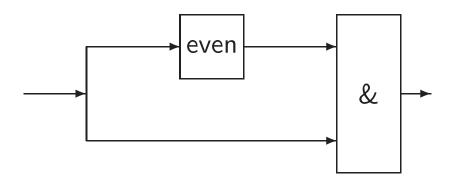
$$x.s when^{\#} 0.c = s when^{\#} c$$

$$merge^{\#} 1.c x.s_{1} s_{2} = x.merge^{\#} c s_{1} s_{2}$$

$$merge^{\#} 0.c s_{1} y.s_{2} = y.merge^{\#} c s_{1} s_{2}$$

Synchrony

Some programs generate monsters.



If $x = (x_i)_{i \in \mathbb{I}N}$ then $\operatorname{even}(x) = (x_{2i})_{i \in \mathbb{I}N}$ and $x \& \operatorname{even}(x) = (x_i \& x_{2i})_{i \in \mathbb{I}N}$.

Unbounded FIFOs!

- must be rejected statically
- every operator is finite memory through the composition is not : all the complexity (synchronization) is hidden in communication channels
- the Kahn semantics does not model time, i.e., impossible to state that two event arrive at the same time

Synchronous (Clocked) streams

Complete streams with an explicit representation of absence (abs).

 $x: (V^{abs})^{\infty}$

Clock : the clock of x is a boolean sequence

$$\begin{split} I\!B &= \{0,1\} \\ \mathcal{CLOCK} &= I\!B^{\infty} \\ \texttt{clock } \epsilon &= \epsilon \\ \texttt{clock } (abs.x) &= \texttt{0.clock } x \\ \texttt{clock } (v.x) &= \texttt{1.clock } x \end{split}$$

Synchronous streams :

$$ClStream(V,cl) = \{s/s \in (V^{abs})^{\infty} \land \texttt{clock} \ s \leq_{prefix} cl\}$$

An other possible encoding : $x : (V \times I\!\!N)^{\infty}$

Dataflow Primitives

Constant :

$$i^{\#}(\epsilon) = \epsilon$$

$$i^{\#}(1.cl) = i.i^{\#}(cl)$$

$$i^{\#}(0.cl) = abs.i^{\#}(cl)$$

Point-wise application :

Synchronous arguments must be constant, i.e., having the same clock

$$+^{\#} (s_1, s_2) = \epsilon \text{ if } s_i = \epsilon$$

$$+^{\#} (abs.s_1, abs.s_2) = abs. +^{\#} (s_1, s_2)$$

$$+^{\#} (v_1.s_1, v_2.s_2) = (v_1 + v_2). +^{\#} (s_1, s_2)$$

Partial definitions

What happens when one element is present and the other is absent?

Constraint their domain :

 $(+): \forall cl: \mathcal{CLOCK}. ClStream(\texttt{int}, cl) \times ClStream(\texttt{int}, cl) \rightarrow ClStream(\texttt{int}, cl)$

i.e., (+) expect its two input stream to be on the same clock cl and produce an output on the same clock

These extra conditions are **types** which must be statically verified

Remark (notation) : Regular types and clock types can be written separately :

- $-(+): \texttt{int} \times \texttt{int} \rightarrow \texttt{int} \quad \leftarrow \texttt{its type}$
- $(+) :: \forall cl.cl \times cl \rightarrow cl \quad \leftarrow \mathsf{its \ clock \ type}$

In the following, we only consider the clock type.

Sampling

 $s_1 \operatorname{when}^{\#} s_2$ $(abs.s) \operatorname{when}^{\#} (abs.c)$ $(v.s) \operatorname{when}^{\#} (1.c)$ $(v.s) \operatorname{when}^{\#} (0.c)$

$$= \epsilon \text{ if } s_1 = \epsilon \text{ or } s_2 = \epsilon$$

$$= \ abs.s \, \texttt{when}^{\#} \, c$$

$$= v.s \, \texttt{when}^{\#} \, c$$

$$= abs.x \, \texttt{when}^{\#} \, c$$

Examples

base = (1)	1	1	1	1	1	1	1	1	1	1	1	1	• • •
x	x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	• • •
h = (10)	1	0	1	0	1	0	1	0	1	0	1	0	• • •
y = x when h	x_0		x_2		x_4		x_6		x_8		x_{10}	x_{11}	• • •
h' = (100)	1		0		0		1		0		0	1	• • •
$z=y$ when h^\prime	x_0						x_6					x_{11}	• • •
k			k_0		k_1				k_2		k_3		• • •
merge $h' \ z \ k$	x_0		k_0		k_1		x_6		k_2		k_3		• • •

let clock five =

let rec f = true fby false fby false fby false fby f in f

let node stutter x = o where

rec o = merge five x ((0 fby o) whenot five) in o

 $\mathtt{stutter}(nat) = 0.0.0.0.1.1.1.1.2.2.2.2.3.3...$

Sampling and clocks

- ▶ $x \text{ when}^{\#} y$ is defined when x and y have the same clock cl
- ▶ the clock of x when[#] c is written cl on c : "c moves at the pace of cl"

$s {\tt on} c$	=	ϵ if $s = \epsilon$ or $c = \epsilon$
$(1.cl) \operatorname{on} (1.c)$	=	1.cl on c
$(1.cl) {\tt on} (0.c)$	—	0.cl on c
$(0.cl) {\tt on} (abs.c)$	=	0. cl on c

We get :

when :
$$\forall cl. \forall x : cl. \forall c : cl. cl \text{ on } c$$

merge : $\forall cl. \forall c : cl. \forall x : cl \text{ on } c. \forall y : cl \text{ on } not \ c.cl$

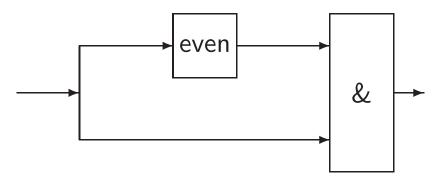
Written instead :

when :
$$\forall cl.cl \rightarrow (c:cl) \rightarrow cl \text{ on } c$$

merge : $\forall cl.(c:cl) \rightarrow cl \text{ on } c \rightarrow cl \text{ on not } c \rightarrow cl$

Checking Synchrony

The previous program is now rejected.



This is a now a typing error

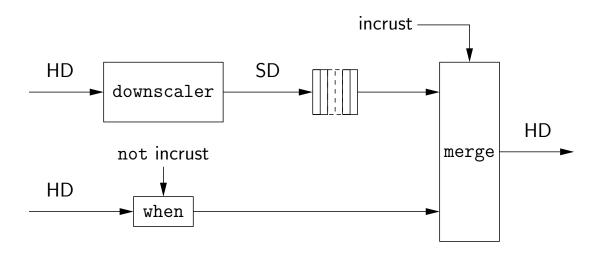
Final remarks :

- We only considered clock equality, i.e., "two streams are either synchronous or not"
- Clocks are used extensively to generate efficient sequential code

From Synchrony to Relaxed Synchrony

- can we compose non strictly synchronous streams provided their clocks are closed from each other?
- communication between systems which are "almost" synchronous
- model jittering, bounded delays
- Give more freedom to the compiler, generate more efficient code, translate into regular synchronous code if necessary

A typical example : Picture in Picture



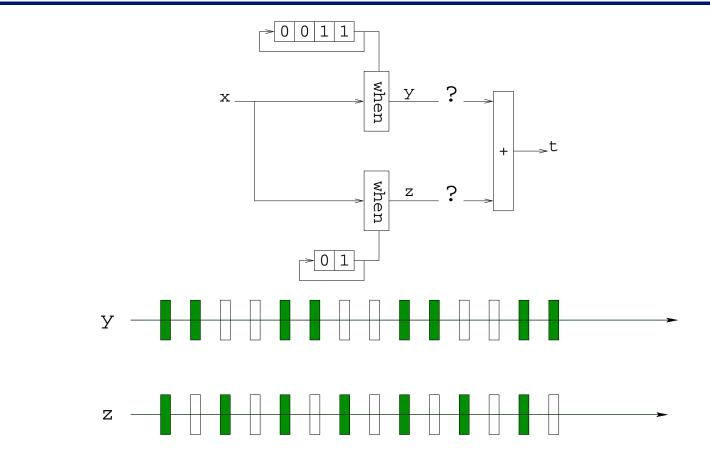
Incrustation of a Standard Definition (SD) image in a High Definition (HD) one

- downscaler : reduction of an HD image (1920×1080 pixels) to an SD image (720×480 pixels)
- when : removal of a part of an HD image
- merge : incrustation of an SD image in an HD image

Question :

- buffer size needed between the downscaler and the merge nodes?
- delay introduced by the picture in picture in the video processing chain?

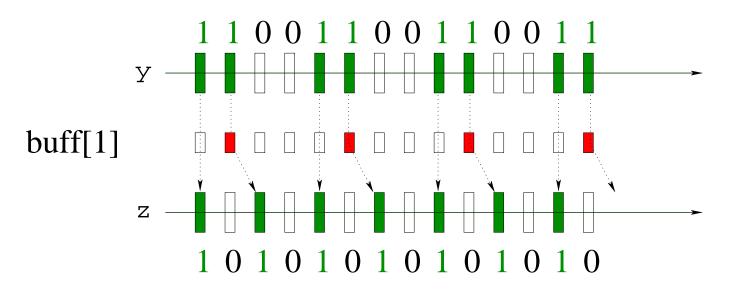
Too restrictive for video applications



- streams should be synchronous
- adding buffer (by hand) difficult and error-prone
- compute it automatically and generate synchronous code

relax the associated clocking rules

$N\mathchar`-Synchronous Kahn Networks$



- based on the use of *infinite ultimately periodic sequences*
- a precedence relation $cl_1 <: cl_2$

Ultimately periodic sequences

 \mathbb{Q}_2 for the set of infinite periodic binary words.

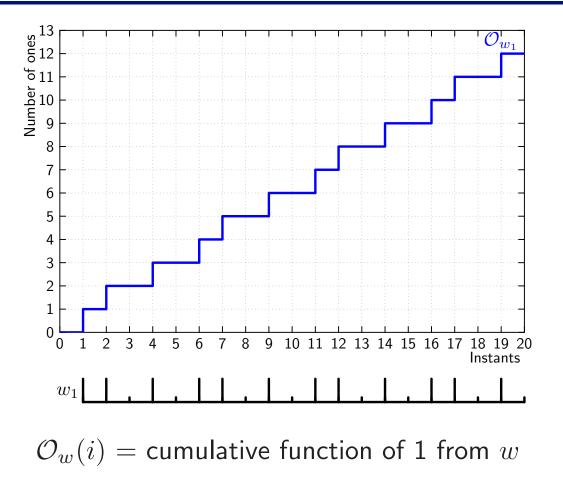
(01)	=	$01 \ 01 \ 01 \ 01 \ 01 \ 01 \ 01 \ 01 \$
0(1101)	=	0 1101 1101 1101 1101 1101 1101 1101

- -1 for presence
- 0 for absence

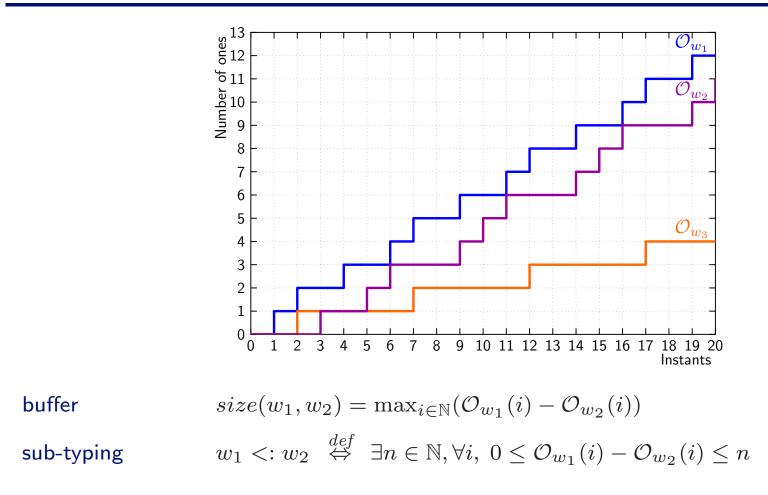
Definition:

$$w ::= u(v)$$
 where $u \in (0+1)^*$ and $v \in (0+1)^+$

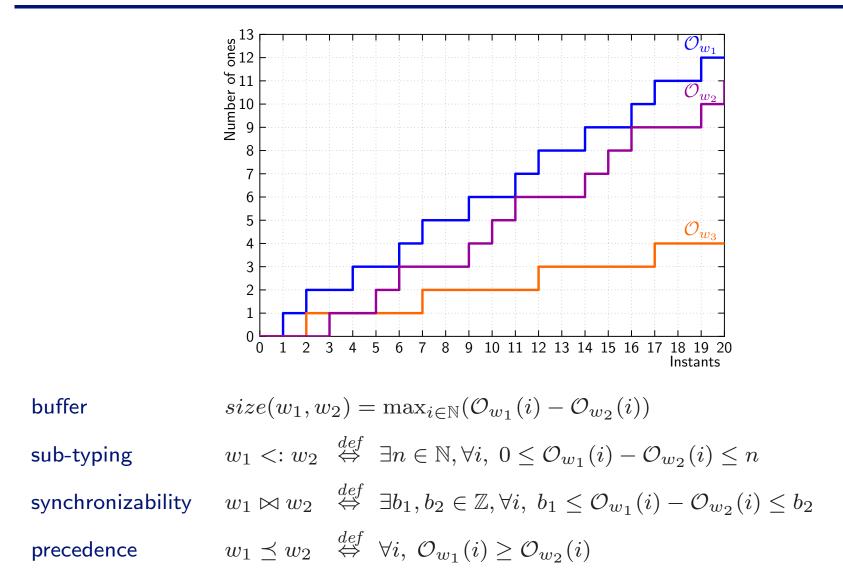
Clocks and infinite binary words



Clocks and infinite binary words



Clocks and infinite binary words



$$c \quad ::= \quad w \mid c \text{ on } w \qquad w \in (0+1)^{\omega}$$

c on w is a sub-clock of c, by moving in w at the pace of c. E.g., 1(10) on (01) = (0100).

base	1	1	1	1	1	1	1	1	1	1	• • •	(1)
p_1	1	1	0	1	0	1	0	1	0	1	•••	1(10)
base on p_1	1	1	0	1	0	1	0	1	0	1	•••	1(10)
p_2	0	1		0		1		0		1	•••	(01)
(base on p_1) on p_2	0	1	0	0	0	1	0	0	0	1	•••	(0100)

For ultimately periodic clocks, precedence, synchronizability and equality are decidable (but expensive)

Come-back to the language

Pure synchrony :

- close to an ML type system (e.g., SCADE 6)
- structural equality of clocks

 $H \vdash e_1 : ck \qquad H \vdash e_2 : ck$

 $H \vdash op(e_1, e_2) : ck$

Relaxed Synchrony :

we add a sub-typing rule :

(SUB)
$$\begin{array}{c} H \vdash e : ck \text{ on } w \quad w <: w' \\ \hline H \vdash e : ck \text{ on } w' \end{array}$$

defines synchronization points when a buffer is inserted

What about non periodic systems?

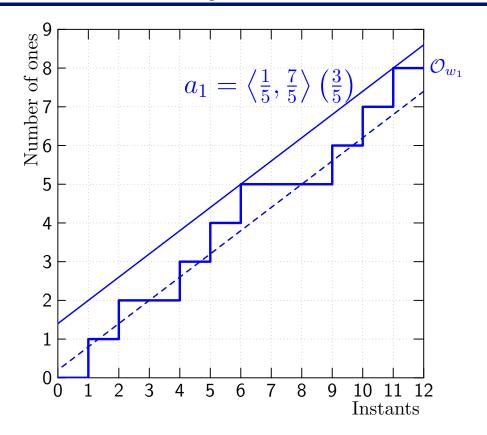
The same idea : synchrony + properties between clocks. Insuring the absence of deadlocks and bounded buffering.

► The exact computation with periodic clocks does not work in practice (and is useless). E.g., (10100100) on $0^{3600}(1)$ on (101001001) = $0^{9600}(10^410^710^710^2)$

- Motivations :
 - 1. To treat long periodic patterns. To avoid an exact computation.
 - 2. To deal with almost periodic clocks. E.g., α on w where $w = 00.((10) + (01))^*$ (e.g. $w = 00\ 01\ 10\ 01\ 01\ 10\ 10\ \dots$)

Idea : manipulate sets of clocks ; turn questions into arithmetic ones

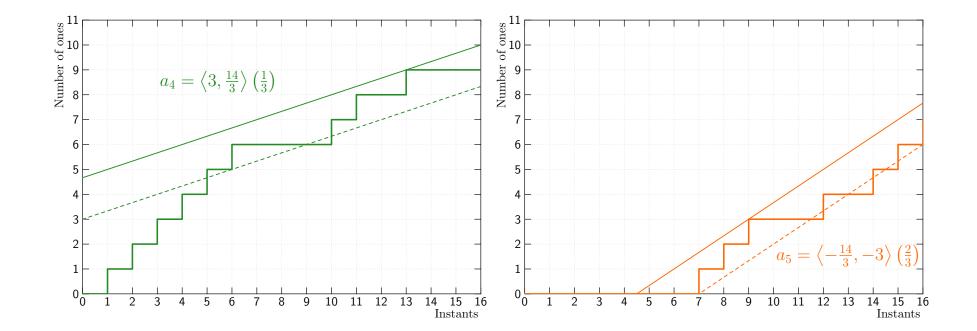
Abstraction of Infinite Binary Words



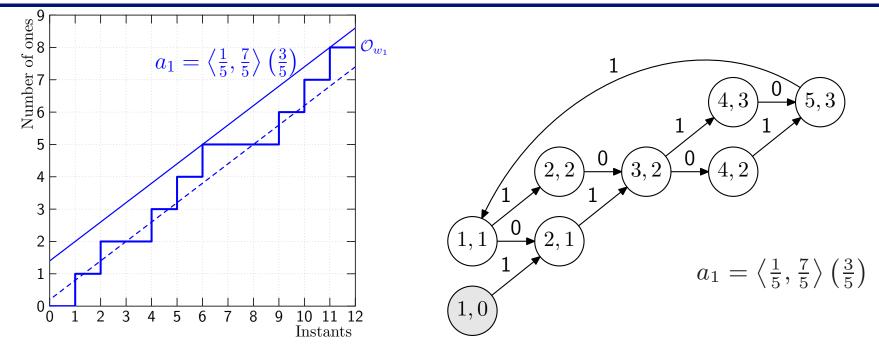
A word w can be abstracted by two lines : $abs(w) = \langle b^0, b^1 \rangle(r)$

$$concr\left(\left\langle b^{0}, b^{1} \right\rangle(r)\right) \stackrel{def}{\Leftrightarrow} \left\{ w, \ \forall i \ge 1, \ \land \begin{array}{c} w[i] = 1 \quad \Rightarrow \quad \mathcal{O}_{w}(i) \le r \times i + b^{1} \\ w[i] = 0 \quad \Rightarrow \quad \mathcal{O}_{w}(i) \ge r \times i + b^{0} \end{array} \right\}$$

Abstraction of Infinite Binary Words



Abstract Clocks as Automata



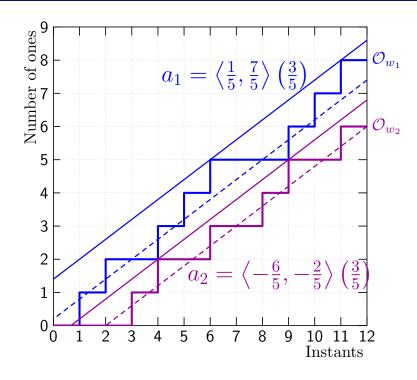
• set of states $\{(i, j) \in \mathbb{N}^2\}$: coordinates in the 2D-chronogram

finite number of state equivalence classes

$$\blacktriangleright \text{ transition function } \delta: \begin{cases} \delta(1,(i,j)) = nf(i+1,j+1) & \text{if } j+1 \leq r \times i+b^1 \\ \delta(0,(i,j)) = nf(i+1,j+0) & \text{if } j+0 \geq r \times i+b^0 \end{cases}$$

allows to check/generate clocks

Abstract Relations



Synchronizability : $r_1 = r_2 \Leftrightarrow \langle b^0_1, b^1_1 \rangle (r_1) \Join \langle b^0_2, b^1_2 \rangle (r_2)$ Precedence : $b^1_2 - b^0_1 < 1 \Rightarrow \langle b^0_1, b^1_1 \rangle (r) \preceq \langle b^0_2, b^1_2 \rangle (r)$ Subtyping : $a_1 <: a_2 \Leftrightarrow a_1 \Join a_2 \land a_1 \preceq a_2$ \triangleright proposition : $abs(w_1) <: abs(w_2) \Rightarrow w_1 <: w_2$ \triangleright buffer : $size(a_1, a_2) = \lfloor b^1_1 - b^0_2 \rfloor$

WG2.8 meeting

Abstract Operators

Composed clocks : $c ::= w \mid \textit{not } w \mid c \textit{ on } c$

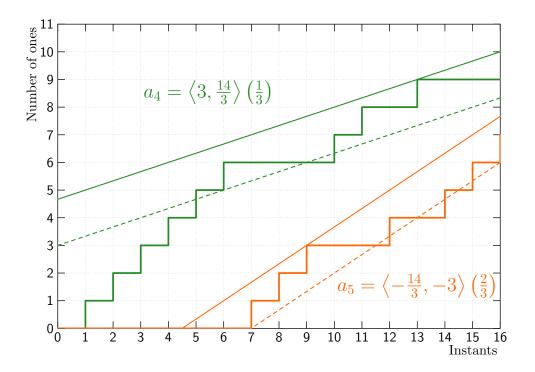
Abstraction of a composed clock :

 $abs(not w) = not^{\sim} abs(w)$ $abs(c_1 on c_2) = abs(c_1) on^{\sim} abs(c_2)$

Operators correctness property :

 $not w \in concr(not^{\sim} abs(w))$ $c_1 on c_2 \in concr(abs(c_1) on^{\sim} abs(c_2))$

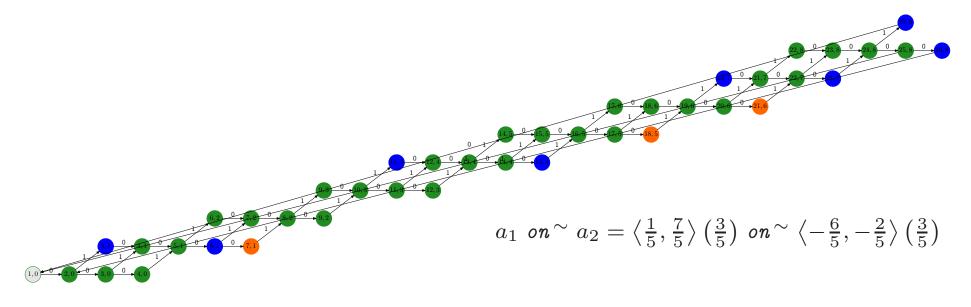
Abstract Operators



 not^{\sim} operator definition :

•
$$not^{\sim} \langle b^0, b^1 \rangle (r) = \langle -b^1, -b^0 \rangle (1-r)$$

Abstract Operators



 on^{\sim} operator definition :

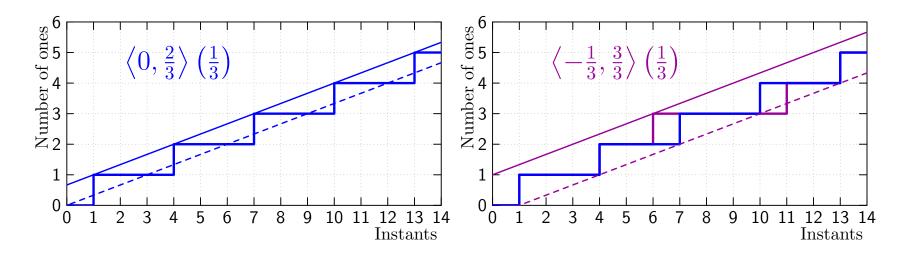
$$\langle b^{0}_{1} , b^{1}_{1} \rangle (r_{1})$$

$$on^{\sim} \langle b^{0}_{2} , b^{1}_{2} \rangle (r_{2})$$

$$= \langle b^{0}_{1} \times r_{2} + b^{0}_{2} , b^{1}_{1} \times r_{2} + b^{1}_{2} \rangle (r_{1} \times r_{2})$$

with $b^{0}_{1} \leq 0$, $b^{0}_{2} \leq 0$

Modeling Jitter



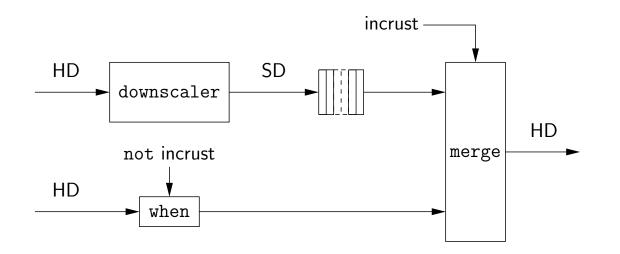
set of clock of rate r = ¹/₃ and jitter 1 can be specified by (-¹/₃, ³/₃) (¹/₃)
(-¹/₃, ³/₃) (¹/₃) = (-1, 1) (1) on ~ (0, ²/₃) (¹/₃)
f :: ∀α.α → α on ~ (-¹/₃, ³/₃) (¹/₃)

Formalization in a Proof Assistant

Most of the properties have been proved in Coq
▶ example of property
Property on_absh_correctness:
forall (w1:ibw) (w2:ibw),
forall (a1:abstractionh) (a2:abstractionh),
forall H_wf_a1: well_formed_abstractionh a1,
forall H_wf_a2: well_formed_abstractionh a2,
forall H_a1_eq_absh_w1: in_abstractionh w1 a1,
forall H_a2_eq_absh_w2: in_abstractionh w2 a2,
in_abstractionh (on w1 w2) (on_absh a1 a2).

- number of Source Lines of Code
 - specifications : about 1600 SLOC
 - ▶ proofs : about 5000 SLOC

Back to the Picture in Picture Example



abstraction of downscaler output :

 $abs((10100100) \text{ on } 0^{3600}(1) \text{ on } (1^{720}0^{720}1^{720}0^{720}0^{720}1^{720}0^{720}0^{720}1^{720}))$

 $= \left\langle 0, \frac{7}{8} \right\rangle \left(\frac{3}{8}\right) \text{ on } \sim \left\langle -3600, -3600 \right\rangle (1) \text{ on } \sim \left\langle -400, 480 \right\rangle \left(\frac{4}{9}\right) = \left\langle -2000, -\frac{20153}{18} \right\rangle \left(\frac{1}{6}\right)$

minimal delay and buffer :

	delay	buffer size
exact result	$9\;598\;(pprox$ time to receive 5 HD lines)	$192\ 240\ (pprox 267\ { m SD}\ { m lines})$
abstract result	$11\ 995\ (pprox\ time\ to\ receive\ 6\ HD\ lines)$	193 079 (≈ 268 SD lines)

Conclusion

Ensuring synchronous and other static properties

- specify/check logical time as special types
- initially a dependent type system; now an ML type system with extension by "Laufer & Odersky"
- this is the way it is done in the Lucid Synchrone compiler the one of SCADE 6
- some other properties can be expressed as dedicated type-systems (correct initialization of registers, causality analysis)

DSL embedding

- ► achieving the same result by designing a DSL (e.g., in Haskell) is difficult
- how to ensure synchrony, the absence of causality loops, unbounded FIFOs (unless we forbid non-length preserving functions)?
- compilation through maximal static expansion does not work well when targeting software code