
Clocks as Types

in Synchronous Dataflow Languages

Marc Pouzet

LRI & INRIA

Univ. Paris-Sud 11

Orsay

IFIP WG 2.8 – 9/06/2009

(joint work with Albert Cohen, Louis Mandel, Florence Plateau)

Synchronous Dataflow Languages

Model/program critical embedded software.

The idea of Lustre :

� directly write stream equations as executable specifications

� provide a compiler and associated analyzing tools to generate embedded

code

E.g, the linear filter :

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1

is programmed by writing, e.g :

Y = (0 -> a * pre(Y)) + Z;

Z = b * X

we write invariants

� other primitives to deal with slow and fast processes (sub/over-sampling) ;

not necessarily periodic

WG2.8 meeting 2/38

An example of a SCADE sheet

WG2.8 meeting 3/38

Dataflow Semantics

Kahn Principle :The semantics of process networks communicating through

unbounded FIFOs (e.g., Unix pipe, sockets) ?

P

R

Q
x y z

tr

– message communication into FIFOs (send/wait)

– reliable channels, bounded communication delay

– blocking wait on a channel. The following program is forbidden

if (A is present) or (B is present) then ...

– a process = a continuous function (V ∞)n → (V ′∞)m.

Lustre :

– Lustre has a Kahn semantics (no test of absence)

– A dedicated type system (clock calculus) to guaranty the existence of an

execution with no buffer (no synchronization)

WG2.8 meeting 4/38

Pros and Cons of KPN

(+) : Simple semantics : a process defines a function (determinism) ;

composition is function composition

(+) : Modularity : a network is a continuous function

(+) : Asynchronous distributed execution : easy ; no centralized scheduler

(+/-) : Time invariance : no explicit timing ; but impossible to state that two

events happen at the same time.

x = x0 x1 x2 x3 x4 x5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

f(x) = y0 y1 y2 y3 y4 y5 ...

This appeared to be a useful model for video apps (TV boxes) : Sally (Philips

NatLabs), StreamIt (MIT), Xstream (ST-micro) with various “synchronous”

restriction à la SDF (Edward Lee)

WG2.8 meeting 5/38

A small dataflow kernel

A small kernel with minimal primitives

e ::= e fby e | op(e, ..., e) | x | i

| merge e e e | e when e

| λx.e | e e | rec x.e

op ::= + | − | not | ...

– function (λx.e), application (e e), fix-point (rec x.e)

– constants i and variables (x)

– dataflow primitives : x fby y is the unitary delay ; op(e1, ..., en) the point-wise

application ; sub-sampling/oversampling (when/merge).

WG2.8 meeting 6/38

Dataflow Primitives

x x0 x1 x2 x3 x4 x5

y y0 y1 y2 y3 y4 y5

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5

x fby y x0 y0 y1 y2 y3 y4

h 1 0 1 0 1 0

x′ = x whenh x0 x2 x4

z z0 z1 z2

merge h x′ z x0 z0 x2 z1 x4 z2

Sampling :

� if h is a boolean sequence, x when h produces a sub-sequence of x

� merge h x z combines two sub-sequences

WG2.8 meeting 7/38

Kahn Semantics

Every operator is interpreted as a stream function (V ∞ = V ∗ + V ω). E.g., if

x 7→ s1 and y 7→ s2 then the value of x + y is +# (s1, s2)

i# = i.i#

+# (x.s1, y.s2) = (x + y).+# (s1, s2)

(x.s1) fby
s2 = x.s2

x.s when# 1.c = x.(s when# c)

x.s when# 0.c = s when# c

merge# 1.c x.s1 s2 = x.merge# c s1 s2

merge# 0.c s1 y.s2 = y.merge# c s1 s2

WG2.8 meeting 8/38

Synchrony

Some programs generate monsters.

-

- even -

&

-

-

If x = (xi)i∈IN then even(x) = (x2i)i∈IN and x&even(x) = (xi&x2i)i∈IN .

Unbounded FIFOs !

� must be rejected statically

� every operator is finite memory through the composition is not : all the

complexity (synchronization) is hidden in communication channels

� the Kahn semantics does not model time, i.e., impossible to state that two

event arrive at the same time

WG2.8 meeting 9/38

Synchronous (Clocked) streams

Complete streams with an explicit representation of absence (abs).

x : (V abs)∞

Clock : the clock of x is a boolean sequence

IB = {0, 1}

CLOCK = IB∞

clock ǫ = ǫ

clock (abs .x) = 0.clock x

clock (v.x) = 1.clock x

Synchronous streams :

ClStream(V, cl) = {s/s ∈ (V abs)∞ ∧ clock s ≤prefix cl}

An other possible encoding : x : (V × IN)∞

WG2.8 meeting 10/38

Dataflow Primitives

Constant :

i#(ǫ) = ǫ

i#(1.cl) = i.i#(cl)

i#(0.cl) = abs .i#(cl)

Point-wise application :

Synchronous arguments must be constant, i.e., having the same clock

+# (s1, s2) = ǫ if si = ǫ

+# (abs .s1, abs .s2) = abs.+# (s1, s2)

+# (v1.s1, v2.s2) = (v1 + v2).+
(s1, s2)

WG2.8 meeting 11/38

Partial definitions

What happens when one element is present and the other is absent ?

Constraint their domain :

(+) : ∀cl : CLOCK.ClStream(int, cl)×ClStream(int, cl)→ ClStream(int, cl)

i.e., (+) expect its two input stream to be on the same clock cl and produce an

output on the same clock

These extra conditions are types which must be statically verified

Remark (notation) : Regular types and clock types can be written separately :

– (+) : int× int→ int ← its type

– (+) :: ∀cl.cl × cl→ cl ← its clock type

In the following, we only consider the clock type.

WG2.8 meeting 12/38

Sampling

s1 when
s2 = ǫ if s1 = ǫ or s2 = ǫ

(abs .s) when# (abs .c) = abs .s when# c

(v.s) when# (1.c) = v.s when# c

(v.s) when# (0.c) = abs .x when# c

merge c s1 s2 = ǫ if one of the si = ǫ

merge (abs.c) (abs .s1) (abs.s2) = abs .merge c s1 s2

merge (1.c) (v.s1) (abs .s2) = v.merge c s1 s2

merge (0.c) (abs .s1) (v.s2) = v.merge c s1 s2

WG2.8 meeting 13/38

Examples

base = (1) 1 1 1 1 1 1 1 1 1 1 1 1 ...

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ...

h = (10) 1 0 1 0 1 0 1 0 1 0 1 0 ...

y = x whenh x0 x2 x4 x6 x8 x10 x11 ...

h′ = (100) 1 0 0 1 0 0 1 ...

z = y whenh′ x0 x6 x11 ...

k k0 k1 k2 k3 ...

merge h′ z k x0 k0 k1 x6 k2 k3 ...

let clock five =

let rec f = true fby false fby false fby false fby f in f

let node stutter x = o where

rec o = merge five x ((0 fby o) whenot five) in o

stutter(nat) = 0.0.0.0.1.1.1.1.2.2.2.2.3.3...

WG2.8 meeting 14/38

Sampling and clocks

� x when# y is defined when x and y have the same clock cl

� the clock of x when# c is written cl on c : “c moves at the pace of cl”

s on c = ǫ if s = ǫ or c = ǫ

(1.cl) on (1.c) = 1.cl on c

(1.cl) on (0.c) = 0.cl on c

(0.cl) on (abs.c) = 0.cl on c

We get :

when : ∀cl.∀x : cl.∀c : cl.cl on c

merge : ∀cl.∀c : cl.∀x : cl on c.∀y : cl on not c.cl

Written instead :

when : ∀cl.cl→ (c : cl)→ cl on c

merge : ∀cl.(c : cl)→ cl on c→ cl on not c→ cl

WG2.8 meeting 15/38

Checking Synchrony

The previous program is now rejected.

-

- even -

&

-

-

This is a now a typing error

let even x = x when half

let non_synchronous x = x & (even x)

^^^^^^^

This expression has clock ’a on half,

but is used with clock ’a

Final remarks :

– We only considered clock equality, i.e., “two streams are either synchronous

or not”

– Clocks are used extensively to generate efficient sequential code

WG2.8 meeting 16/38

From Synchrony to Relaxed Synchrony

– can we compose non strictly synchronous streams provided their clocks are

closed from each other ?

– communication between systems which are “almost” synchronous

– model jittering, bounded delays

– Give more freedom to the compiler, generate more efficient code, translate

into regular synchronous code if necessary

WG2.8 meeting 17/38

A typical example : Picture in Picture

not incrust

incrust

SDHD

HD

HD

downscaler

when

merge

Incrustation of a Standard Definition (SD) image in a High Definition (HD) one

� downscaler : reduction of an HD image (1920×1080 pixels)

to an SD image (720×480 pixels)

� when : removal of a part of an HD image

� merge : incrustation of an SD image in an HD image

Question :

� buffer size needed between the downscaler and the merge nodes ?

� delay introduced by the picture in picture in the video processing chain ?

WG2.8 meeting 18/38

Too restrictive for video applications

?

t+

w
h
e
n

w
h
e
n

y

z

x

0 1

1 10 0

?

z

y

� streams should be synchronous

� adding buffer (by hand) difficult and error-prone

� compute it automatically and generate synchronous code

relax the associated clocking rules

WG2.8 meeting 19/38

N-Synchronous Kahn Networks

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

– based on the use of infinite ultimately periodic sequences

– a precedence relation cl1 <: cl2

WG2.8 meeting 20/38

Ultimately periodic sequences

Q2 for the set of infinite periodic binary words.

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

– 1 for presence

– 0 for absence

Definition :

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+

WG2.8 meeting 21/38

Clocks and infinite binary words

Instants

N
u
m

b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

w1

Ow(i) = cumulative function of 1 from w

WG2.8 meeting 22/38

Clocks and infinite binary words

Instants

N
u
m

b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

buffer size(w1, w2) = maxi∈N(Ow1
(i) −Ow2

(i))

sub-typing w1 <: w2

def
⇔ ∃n ∈ N, ∀i, 0 ≤ Ow1

(i) −Ow2
(i) ≤ n

WG2.8 meeting 23/38

Clocks and infinite binary words

Instants

N
u
m

b
er

of
on

es

20191817161514131211109876543210

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Ow1

Ow2

Ow3

buffer size(w1, w2) = maxi∈N(Ow1
(i) −Ow2

(i))

sub-typing w1 <: w2

def
⇔ ∃n ∈ N, ∀i, 0 ≤ Ow1

(i) −Ow2
(i) ≤ n

synchronizability w1 ⊲⊳ w2

def
⇔ ∃b1, b2 ∈ Z,∀i, b1 ≤ Ow1

(i) −Ow2
(i) ≤ b2

precedence w1 � w2

def
⇔ ∀i, Ow1

(i) ≥ Ow2
(i)

WG2.8 meeting 24/38

Multi-clock

c ::= w | c on w w ∈ (0 + 1)ω

c on w is a sub-clock of c, by moving in w at the pace of c. E.g.,

1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)

For ultimately periodic clocks, precedence, synchronizability and equality are

decidable (but expensive)

WG2.8 meeting 25/38

Come-back to the language

Pure synchrony :

� close to an ML type system (e.g., SCADE 6)

� structural equality of clocks

H ⊢ e1 : ck H ⊢ e2 : ck

H ⊢ op(e1, e2) : ck

Relaxed Synchrony :

� we add a sub-typing rule :

H ⊢ e : ck on w w <: w′

(SUB)

H ⊢ e : ck on w′

� defines synchronization points when a buffer is inserted

WG2.8 meeting 26/38

What about non periodic systems ?

� The same idea : synchrony + properties between clocks. Insuring the

absence of deadlocks and bounded buffering.

� The exact computation with periodic clocks does not work in practice (and

is useless). E.g., (10100100) on 03600(1) on (101001001) =

09600(104107107102)

� Motivations :

1. To treat long periodic patterns. To avoid an exact computation.

2. To deal with almost periodic clocks. E.g., α on w where

w = 00.((10) + (01))∗

(e.g. w = 00 01 10 01 01 10 01 10 . . .)

Idea : manipulate sets of clocks ; turn questions into arithmetic ones

WG2.8 meeting 27/38

Abstraction of Infinite Binary Words

Instants

N
u
m

b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

A word w can be abstracted by two lines : abs(w) =
〈

b0, b1
〉

(r)

concr
“D

b
0
, b

1
E

(r)
”

def
⇔

8

<

:

w, ∀i ≥ 1, ∧
w[i] = 1 ⇒ Ow(i) ≤ r × i + b1

w[i] = 0 ⇒ Ow(i) ≥ r × i + b0

9

=

;

WG2.8 meeting 28/38

Abstraction of Infinite Binary Words

Instants

N
u
m

b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a4 =
〈

3, 14
3

〉 (

1
3

)

Instants

N
u
m

b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a5 =
〈

−14
3 ,−3

〉 (

2
3

)

WG2.8 meeting 29/38

Abstract Clocks as Automata

Instants

N
u
m

b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

4, 22, 2

1, 1

5, 34, 3

3, 2

2, 1

1, 0

1

1

0

1

0
1

0

1

0

1

a1 =
˙

1

5
, 7

5

¸ `

3

5

´

� set of states {(i, j) ∈ N2} : coordinates in the 2D-chronogram

� finite number of state equivalence classes

� transition function δ :

8

<

:

δ(1, (i, j)) = nf (i + 1, j + 1) if j + 1 ≤ r × i + b1

δ(0, (i, j)) = nf (i + 1, j + 0) if j + 0 ≥ r × i + b0

� allows to check/generate clocks

WG2.8 meeting 30/38

Abstract Relations

Instants

N
u
m

b
er

of
on

es

1211109876543210

9

8

7

6

5

4

3

2

1

0

Ow1

a1 =
〈

1
5 ,

7
5

〉 (

3
5

)

Ow2

a2 =
〈

−6
5 ,−

2
5

〉 (

3
5

)

Synchronizability : r1 = r2 ⇔
˙

b0
1, b

1
1

¸

(r1) ⊲⊳∼
˙

b0
2, b

1
2

¸

(r2)

Precedence : b1
2 − b0

1 < 1 ⇒
˙

b0
1, b

1
1

¸

(r) �∼
˙

b0
2, b

1
2

¸

(r)

Subtyping : a1 <:∼ a2 ⇔ a1 ⊲⊳∼ a2 ∧ a1 �∼ a2

� proposition : abs(w1) <:∼ abs(w2) ⇒ w1 <: w2

� buffer : size(a1, a2) =
¨

b1
1 − b0

2

˝

WG2.8 meeting 31/38

Abstract Operators

Composed clocks : c ::= w | not w | c on c

Abstraction of a composed clock :

abs(not w) = not
∼ abs(w)

abs(c1 on c2) = abs(c1) on
∼ abs(c2)

Operators correctness property :

not w ∈ concr(not∼ abs(w))

c1 on c2 ∈ concr(abs(c1) on
∼ abs(c2))

WG2.8 meeting 32/38

Abstract Operators

Instants

N
u
m

b
er

of
on

es

161514131211109876543210

11

10

9

8

7

6

5

4

3

2

1

0

a4 =
〈

3, 14
3

〉 (

1
3

)

a5 =
〈

−14
3 ,−3

〉 (

2
3

)

not
∼ operator definition :

� not
∼

〈

b0, b1
〉

(r) =
〈

−b1,−b0
〉

(1− r)

WG2.8 meeting 33/38

Abstract Operators

4, 03, 0

7, 16, 1

9, 2

12, 311, 3

15, 414, 4

18, 517, 5

21, 620, 6

23, 722, 7

26, 825, 8

25, 9

24, 823, 822, 8

21, 720, 7

19, 618, 617, 6

16, 515, 514, 5

13, 412, 411, 4

10, 39, 3

8, 27, 26, 2

5, 14, 13, 1

2, 01, 0
0 0

1

0 0 0

1

0 0 0

1

0 0

1

0 0 0

1

0 0 0

1

0 0 0

1

0 0

1

0 0 0

1

0

0

1 1

0

1 1

0

1 1

0

1 1

0

1 1

0

1 1

1

0

1 1

0

1 1

a1 on
∼ a2 =

˙

1

5
, 7

5

¸ `

3

5

´

on
∼

˙

− 6

5
,− 2

5

¸ `

3

5

´

on
∼ operator definition :

〈 b0
1 , b1

1 〉 (r1)

on
∼ 〈 b0

2 , b1
2 〉 (r2)

= 〈 b0
1 × r2 + b0

2 , b1
1 × r2 + b1

2 〉 (r1 × r2)

with b0
1 ≤ 0, b0

2 ≤ 0

WG2.8 meeting 34/38

Modeling Jitter

Instants

N
u
m

b
er

o
f
o
n
es

14131211109876543210

6

5

4

3

2

1

0

〈

0, 2
3

〉 (

1
3

)

Instants

N
u
m

b
er

o
f
o
n
es

14131211109876543210

6

5

4

3

2

1

0

〈

−1
3 ,

3
3

〉 (

1
3

)

� set of clock of rate r = 1
3

and jitter 1 can be specified by
〈

− 1
3
, 3

3

〉 (

1
3

)

�

〈

− 1
3
, 3

3

〉 (

1
3

)

= 〈−1, 1〉 (1) on∼
〈

0, 2
3

〉 (

1
3

)

� f :: ∀α.α→ α on∼
〈

− 1
3
, 3

3

〉 (

1
3

)

WG2.8 meeting 35/38

Formalization in a Proof Assistant

Most of the properties have been proved in Coq

� example of property

Property on_absh_correctness:

forall (w1:ibw) (w2:ibw),

forall (a1:abstractionh) (a2:abstractionh),

forall H_wf_a1: well_formed_abstractionh a1,

forall H_wf_a2: well_formed_abstractionh a2,

forall H_a1_eq_absh_w1: in_abstractionh w1 a1,

forall H_a2_eq_absh_w2: in_abstractionh w2 a2,

in_abstractionh (on w1 w2) (on_absh a1 a2).

� number of Source Lines of Code

� specifications : about 1600 SLOC

� proofs : about 5000 SLOC

WG2.8 meeting 36/38

Back to the Picture in Picture Example

not incrust

incrust

SDHD

HD

HD

downscaler

when

merge

� abstraction of downscaler output :

abs((10100100) on 03600(1) on (172007201720072007201720072007201720))

=
˙

0, 7

8

¸ `

3

8

´

on
∼ 〈−3600,−3600〉 (1) on∼ 〈−400, 480〉

`

4

9

´

=
˙

−2000,− 20153

18

¸ `

1

6

´

� minimal delay and buffer :

delay buffer size

exact result 9 598 (≈ time to receive 5 HD lines) 192 240 (≈ 267 SD lines)

abstract result 11 995 (≈ time to receive 6 HD lines) 193 079 (≈ 268 SD lines)

WG2.8 meeting 37/38

Conclusion

Ensuring synchronous and other static properties

� specify/check logical time as special types

� initially a dependent type system ; now an ML type system with extension by

“Laufer & Odersky”

� this is the way it is done in the Lucid Synchrone compiler the one of

SCADE 6

� some other properties can be expressed as dedicated type-systems (correct

initialization of registers, causality analysis)

DSL embedding

� achieving the same result by designing a DSL (e.g., in Haskell) is difficult

� how to ensure synchrony, the absence of causality loops, unbounded FIFOs

(unless we forbid non-length preserving functions) ?

� compilation through maximal static expansion does not work well when

targeting software code

WG2.8 meeting 38/38

